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ABSTRACT

-e consider the problem of controlling a possibly degenerate diffusion

process so as to minimize the probability of escape over a given time interval.

It is assumed that the control acts on the process through the drift coefficient,

and that the noise coefficient is small. By developing a large deviations type

theory for the controlled diffusion, we obtain several results. The limit of the

normalized log of the minimum exit probability is identified as the value I of

an associated (deterministic) differential game. Furthermore, we identify a

deterministic (and c-independent) mapping g from the sample values iw(s),

0 4 s 4 t, into the control space such that if we define the control used at
time t by u(t) g(cw(s), 10 4 s I t), then the resulting control process is

progressively measurable and p-optimal (in the sense that the limit of the

normalized log of the exit probability is within of I). ,

'p.

'p.

American Mathematical Society 1980 subject classifications: Primary
93E20, 60FI0; Secondary 92D25.

Key Words and phrases: Controlled diffusions, large deviations,
differential games.
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1 INTRODUCTION

Consider the white noise driven control system living in Pd

Js' dxu,e = b(xU'E,u)dt + Eo(xu'()dw, (1.1)

where u takes values in a compact set K C 5n. There are many problems

where one wants to keep xu.E(-) in a set G until some particular job is

finished. For example, in the problem of pointing a telescope on a satellite,

the domain G and the duration are determined by the object to be

photographed and the time required. See Meerkov and Runolfsson [6] for

- additional examples.

The associated control problem can be formulated in several different

ways, depending on the time interval of interest. We consider two criteria.

Define TuE = inf(t: xu,(t) e 81G). One criterion is to minimize

PjTu'e ( T), x e Go = interior of G, (l.2a)

for given T. The other criterion of interest here is the maximization of

EXTuE, x e GO. (l.2b)

Px and Ex denote the probability and expectation (resp.) given xuE(O) = x.

In general, it is very difficult to solve for the optimal control. However,

in many problems the parameter e is small. The theory of large deviations

provides an alternative which can give a nearly optimal control for small E,

and a great deal more information and insight into the control process, likely6,,

escape routes, error bounds, etc. Take u to be a feedback function u(x,t) that

' 5 is smooth in x, uniformly in t ( T. Define the system

01r
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= b(O,u(O,t)) + o(O)v, 0(0) = x,

and define
rli 1 Tfo

S(x,u,T) = inf 2" o Jv(t)12dt: 0(t) e 8G for some t ( T).

The theory of large deviations tells us (under some other regularity conditions)

that

S(x,u,T) = - lim E2 log Px{Tu-E 4 T).
E

Because of this result, one is tempted to try to maximize (or nearly maximize)

S(x,u,T), and to use the corresponding (if any) maximizing (or 'smooth' nearly

maximizing) control. This approach encounters serious unresolved technical

difficulties. In particular, it is not at all clear that the supremum over smooth

feedback controls will be as large as that obtained over alternative classes of

controls, such as those used below. Note that since we wish to supremize (Over

u) an infimum over v, the basic problem can be formulated as a differential

* game.

We mention here that calculating the limit of the normalized log of the

minimum exit probability is by itself not useful in establishing the optimal

performance for all small i of any given control scheme. It may happen

that a control that is found to be good for a small but fixed c > 0 actually

behaves poorly in the limit E - 0. Obtaining a 'good' control that depends on

E only through the actual driving noise process will be an important part of

Ithe development below.

Known results in this area are few in number. W. Fleming and P.

Souganidis [3] consider the large deviations problem associated with the
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minimization of (l.2a) over the class of feedback controls taking values in

K. By use of PDE-viscosity solution techniques they calculate the

asymptotics of the infimum of the exit probabilities. Their approach is

restricted to the case where the diffusion is uniformly nondegenerate:

o(x)o'(x) ) cI, with c > 0. Furthermore they identify the limit as the

value of a certain associated (deterministic) differential game. They do

not deal with the uniformity issue raised previously, nor with the problem

of construction of -optimal policies and their uniformity properties. A.

D. Wentzell and M. I. Freidlin [5] consider the optimization problem

associated with (l.2b) for a wide class of processes that includes (1.1) in

the uniformly nondegenerate case. However, in order to obtain a solution

with the desired properties, they restrict the class of available controls in

a way that is probably not natural for these types of problems. For

example, they consider feedback controls that are continuous, except

possibly at one point. Simple examples in dimension greater than one show

the 'best' control may have discontinuities along manifolds of dimension

one less.

The objective of this paper is to extend the conclusions of [3). By use

of probabilistic arguments (as opposed to PDE), we recover the results

presented there. The probabilistic arguments allow us to extend these

results to the important degenerate case which is in fact more natural in

applications. We also address the uniformity issue raised above. The

results in this direction are not completely satisfactory, in that the

exhibited control is not of the simple feedback form, but depends on the

'full information' of the past. However, they do suggest that feedback

V I
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controls are available which do not depend on e explicitl.y,

and which are nearly optimal for small c.

Our basic assumptions and definitions are as follows.

Assumption Al.

(1) b(.,.) and o(.) are Lipschitz with constant K and bounded with

constant B on an open set containing G, the closure of G.

(2) The control space K is compact and independent of time.

(3) G is an open set in Rd.

(4) Either (i) o(.) is a square matrix and uniformly nondegenerate, or

else (ii) we can partition b and o in the form

,b(x,u) = ax(x))
b(x,u) =,OWx)

b2(x) 0

where o(-) is a square matrix and uniformly nondegenerate.

Throughout the paper we shall assume that we are given a probability

space (fl,F(t),P) and a Wiener process w(.) on [0,1] with respect to T(t). We

then take as our class of admissible controls the set of K-valued progressively

measurable processes. We denote the set of all such processes by F. For

convenience we recall the definition of a progressively measurable process

* (with respect to T(t)).

Definition. A stochastic process t(t) on the sample space fl and time interval

[0,1] is F(t)-progressively measurable if the mapping [O,t] x n a (s,w) - t(s)(w) is

B(t) x 7(t) measurable for every 0 4 t 4 1, where B(t) is the Borel 0-algebra of
'p

[0,tJ.

%'.
|_p
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" Remark. The symbol u will be used to represent two different types of

control processes, depending on the context. At times it will be a

deterministic process used in the differential game, and at times it will denote

a stochastic process used to control the diffusion. Likewise v will be used to

represent both stochastic and deterministic processes, depending on the context.

In all cases the intended use should be clear.

The organization of the remainder of the paper is as follows. In

Section 2 we give a precise definition of the associated differential game

in terms of an adaptation of the Elliott-Kalton [4] formulation, and discuss

how the existence of value for this differential game relates to our

problem. The only difference between our definition and the usual

Elliott-Kalton definition is the added requirement that the maps a and 0

defined below must be measurable. The additional requirement of

measurability is due to the fact that several uses are made of stochastic

processes defined by composing a (or 0) with a given progressively

measurable process. Measurability of a (or 0) ensures that the resulting
A .'

process is adapted. The addition of this condition does not change the

resulting 'value' of the game. Section 3 contains the statement and proof

of the main theorem. The proofs of several technical lemmas make up a

. concluding appendix. For notational simplicity, we shall consider the

problem on the interval [0,11. The results carry over to an arbitrary

interval in the obvious way.

Notation. We use Cx[0,1 ] to denote the set of continuous functions taking

values in P0' (with k depending on the context) and starting at x, and take

d(.,.) as the sup norm metric in this space.

N A
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2. THE ASSOCIATED DIFFERENTIAL GAME

Define

p M = (u: [0,1] - K: u is measurable),

N = Iv:[0,1] -5 P: Ivldt < CD
0

We identify any two functions which agree a.e. and consider M and N as

metric spaces with the L1 metric. A mapping a : N - M is called a strategy

for the maximizing player if a is measurable and if whenever 0 4 s 4 1 and

v(t) = v(t) for a.e. 0 4 t 4s,

then

c.v](t) = cav](t) for a.e. 0 4 t 4 s.

A strateg' fQr the minimizing Diavcr is defined in an analogous way, and such

a strategy will be denoted by the symbol 8. The set of all minimizing

"t (respectively maximizing) strategies will be denoted by a (resp. r).

Next define x(x) to be zero if xe BG and +- if x -G O. The definition of

the differential game (DG) is then given in terms of the following dynamical

-" equation and cost:

"p

Dynamics.

0 = b(O,u) + c(O)v, 0(0) - x. (2.1)

Let Tx = inf(t: 0(t)E 8G) A I.

Cost. For (.) defined through (2.1), set

%t

I,
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C(u,v) - - I v(t)I2dt + X((T )).
20

We then define the lower value of the DG by

1I(x) = Lnf sup C(u, 1[u]).uEM

The upoer value is defined by

I+(x) = S r C(a(v], v).

Remarks. The terms upper and lower refer to which player has the

'information advantage'. In a heuristic sense, for the game corresponding

to the lower value we allow the minimizing player (v here) to know the

next move of the maximizing player (u) before choosing his own move.

Although this distinction is somewhat obscured in the abstract

Elliott-Kalton formulation, it is intuitively obvious in the Fleming and

Friedman formulations [1], which are equivalent to the Elliott-Kalton

formulation under some hypotheses. The reader is referred to [1] for

-.- further discussion. The DG we consider differs from that of [3], but it

, %seems to be more natural for this type of problem. The remarks that

follow illustrate this point.

The Elliott-Kalton definitions of upper and lower values in terms of

,N strategies have interesting interpretations in terms of the large deviations

properties of the controlled diffusion. First note that the v-control in the
-V.

DG plays the role of the small noise eWv in the diffusion. Let small 6 >

N 0 be given. Consider the upper value I+(x), and let a be a 'nearly'

'optimizing strategy for the maximizing player. Let v e N be given. Then

% a,
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The 'nearly' supremizing a gives us a strategy that accomplishes one of41
two things. Either X(d(Tx)) = (0 never escapes from G) or

". JXIV() ) 1+(x) -
b2

(0escapes from G, but at a 'cost' of not less than 1+ (x) - 6). Large deviations

theory for the process eW then suggests that when e is small the probability of

eW 'tracking' one of the v functions that corresponds to escape from G (in the

sense that xu,E is near to the corresponding 0 associated with Cv], v) is no

greater than exp - (I+(x) - 26)/c 2 . This suggests that we can obtain a

progressively measurable control uo from the 'nearly' supremizing o so that

* when c is small

x °  I) (exp- (1+(x)-26)/c2 .

On the other hand, consider the lower value 1-(x), and let 8 be 'nearly'

infimizing. Then, no matter what progressively measurable control strategy

u(t) is used, 8 describes a path for the noise to follow whose 'action' or 'cost'

is no greater than 1(x) + 6, and which leads to escape. The large deviations

properties of 6v now suggest that no matter what control is used the

probability of escape should (roughly) be bounded below by exp -I'(x)-26/(2 .

.• We thus have (roughly)

exp -((x) -26)/c 2 ( P1{--' (l) ( exp - (I+(x) - 26)/( 2,

with the conclusion that 1-(x) 0 1+(x). From the definition of the game it is

possible to show 1'(x) (1+(x), which implies that the game has a value.

"5

'it"
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3. THE MAIN THEOREM

Before stating the main theorem, we introduce a 'continuity' assumption

on the domain G. Define GB' for small B as follows: if B ) 0, then

GB = (x e R: inf(Ix-y1: y E G) 4 B),

if 6 < 0, then

GB = {x E P 1: inf{Ix-y1: y ft G) ; -B; .

Next define I+(x,6), 1(x,6) as the upper and lower values of the DG defined
J'.

- in Section 2, but with GB replacing G there. Since I+(x,B) (respectively 1-(x,6))

is monotone nondecreasing in B, the set of discontinuities of I+(x, - ) (resp.,

l-(x,.)) is countable. (Note that x is fixed here.)

Assumption A2. I+(x,6) and 1'(x,6) are continuous at B = 0.

Remarks. It is simple to prove in the uniformly nondegenerate case that

I+(x,.) and 1(x,.) are in fact continuous functions. This follows from the

fact that b(.,-) is bounded on G x K, while v is allowed to 'push' the state in

any direction. In the degenerate case it can happen that I+(x, - ) (or 1(x,.)) is

in fact discontinuous at B = 0, but even then Assumption A2 is not very

restrictive, since it is satisfied for an arbitrarily small perturbation of G. A

consequence of the theorem stated below is that at points at which both

I+(x,.) and 1(x,.), are continuous, we have I+(x,6) = 1'(x,6). Monotonicity

then implies I+(x,.) and 1-(x,.) have the same set of discontinuity points. It

should also be noted that in order to obtain the result analogous to the main

MI
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theorem in the simpler case of uncontrolled diffusion processes:

lim C2 log Px(T ( 1) = -I(x),

the assumption obtained from Assumption A2 when the set K contains only

. ,  one element is also required.

V., Theorem. Assume A I and A2, and II 1+(x) and 1-(x) b the UDoer and lower

values Qf the DG described in Section 2. For any u E F, let xUE(.) t

solution of

dxu'E = b(xuEc,u)dt + co(xU'E)dw, xu.E(O) = x, (3.1)

and. define

Tu 'E = inf(t: xU'E(t) E 8G). (3.2)

. Then

() lim E2 log inf P (Tu ' ( 1) -l(x), (3.3)
.- uEF X

(2) Riven c > 0 there exists a measurable function g: Co0,1] M with the

following properties:

(i) if 0 4 s 4 I and f(t) = f(t) for 0 4 t 4 s, then g[f](t) f g[f](t) for a.e.

0 4 t < S,

(ii) if we define u - g[ew] then u cF and

lim E 2 log P(TuE- ( 1) ( -I+(x) + c, (3.4)

= €_(3) l+(x) 1-I(x).F Remarks, Part (2) of the theorem gives the existence of a c-optimal (in

%0
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the asymptotic sense) control u that depends on xu,E(s), 0 ( s ( t, at time

t. Part (1) yields an important uniformity property. For any given c>0

and any (possibly E-dependent) progressively measurable control u., there is

C 0>0 such that for 0 <c ( t o ?

Px(Tu c, 1) )p Ex(Tu, ( l)exp - c/c.

Proof of (1). For c > 0 there exists 5 > 0 such that 1(x,B) (1-(x) + c.

Consider now the DG with domain G6 and let C6(u,v) denote the cost

associated with the domain G6 . Then there exists a minimizing strategy 13 6 A

such that

sup C6(u, B[u]) 1'(x) + 2c. (3.5)

If we redefine 1[u](t) to be zero when t T"X (given by (2.1)) then 13 is

still a strategy and obviously still satisfies (3.5).

Without loss of generality we may assume the following property of the

chosen strategy 13: (d/dt)13[u](t) exists for all u - M (a.s. in t) and furthermore

there is C1 < - such that

,. 13[u](t) V 18[u](t) ( C1
dt

(a.s. in t) for all u e Ni This fact follows from Assumption A2 and Lemma Al

of the appendix.

Take any control process u e F, and define the processes

v(t) = 13[uJ(t)

' b(xu',u) + o(O()v, 0'(0) = x.

We then have

P
d

by

O-
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1,401i V Iv(t01 4 C, (a.s. in t)

for every w. It follows from the definition of a strategy that v(t) is T(t)

measurable. Since the 13 under consideration has the property that 0[u](.) is

continuous for every u Ce , v(.) and OE(.) are f(t)-progressively measurable

processes [7; Theorem 1.5.1].

Now define ye = xUf - 0. Then yE satisfies the stochastic equation
V.

dyc = o(xuC)c dw - o(O()vdt, yE(0) = 0 (3.6a)

* Let P1 denote the measure induced on CJO,1] by the solution to (3.6a). By

Girsanov's theorem there is a Brownian motion T(.) (with respect to the same

filtration (.) as w(.)) such that

dyE = o(xU.,)E di, y((0) = 0, (3.6b)

and such that if Po is the measure induced on CJO,I] by (3.6b), then

- [= <o(E)v, oxU.)d, > - i iC-1(xU,-E)o(C)vIjdt
0dPo LE 0  2 E 0

-(In the degenerate case replace a by o in the above.)

Define fl - {= or :su~ IyE(t) ( 62). We will use the equality
*o 

P2 OO •

j 6 2 - "E dP 0
62

First note that for any 62 > 0, Po(fl)- 1, as e - 0. Using the nondegeneracy

and the Lipschitz continuity of o(.) (or of a,(-) in the degenerate case),

for given 6' > 0 there is 6" > 0 such that Ix - YI 4 6" implies jo 1'(x)o(y) -

I1 6'. This, together with (3.5) yields
*11f

- I Io'(xU')o(01)vI2 dt 4 I(x) + 3c
2 0
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on 2 if 62 is small enough.

Finally we consider the term

I"0 IfI<o(O')v, dy' >

Since (d/dt)o(OE(t))v(t) is bounded, an integration by parts yields the bound

B C for some fixed finite constant C2, when on the set (kE2 2

Assembling these estimates, we have (for small enough 62)

P 1(fl) exp - (1-(x) + 5c)/E 2  (3.8)

when E is small. We now pick 62 small enough so that the event supo(t,1IYE(t)<

( B implies xU,6(t) exits G before t = 1. The Lipschitz condition on b(.,.)

implies that on (I',

0'. = b(01,u) + -/ + oOE)v, 06(0) = xV.o

where supO(t( 1Iy(t) ( KB 2. We compare 06 to the solution of

=b( ,u) +1 a(i1)v, 4KO) = x.

By Gronwall's lemma, and the various Lipschitz and boundedness conditions,

we can pick 62 4 6/2 so that d(O(,q) ( 6/2 on r . By the definition of 8, (.)

* must exit G6 before time t - 1. Hence on n6 it must happen that xuE(.)
62

exists G before t = 1. This combined with (3.8) finishes the proof.

Proof of (21. Now consider the upper value of the differential game:

I+(x) - inf C(Ov, v).

SI'N

"F°

5,
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Fix c > 0, and pick 6 > 0 so that I+(x,-S) ; 1+(x) - c. Let c be a 'nearly'

maximizing strategy for the differential game with domain G"r , in the sense

that

inf C'6 (0 v], v) ) I+(x, -6) - C. (3.9)

We next describe how we use a to control the diffusion process. Let

the Wiener process w(.) be given, and define (for A > 0)

VtA(t) f0 for t E [0,A) (3.10)
[w(nA)-w(nA-A)]/A for t e [nA,nA+A), n ;k 1.

We then define our control process by

u(t) = c(vC ](t). (3.11)

From Assumption A2 and Lemma A2 of the appendix it follows that we may

assume without loss of generality that the strategy a has been chosen so that

a'v](.) is a piecewise constant function for every v - N. As was the case

previously, the definition of a strategy implies u(t) is T(t) measurable.

Hence u(t) is an 7(t)-progressively measurable process [7; Theorem 1.5.1].

The controlled diffusion is therefore

dxuE, = b(xu'(,u)dt + co(xU'E)dw, xuuE(O) = x. (3.12)

-': In order to prove the desired result it is convenient to compare xu (.) with

the solution to

x.-=t. b(xE,,u) + co(xEA)vA, xEA(0) x.

Assume that for any given p > 0 and M < one could show the existence of

etL7



-o > 0 and A0 > 0 so that for A A0, 4 t o

Px(d(xu ,x ' A) ) p) ( exp - M/( (3.13)

Then by taking M = I+(x) + I and p = 6, it is obvious that the upper bound is

proved if we can show

IFi m 2 log P (xc'A(t) e 8G0r for some t < 1) ( -I+(x,-S) + 2c. (3.14)

However this follows from our choice of a. Since (3.9) holds, there are only

two possibilities for each v e N. Either

lI

2 J Iv(t)I2dt ) 1+(x, -6) - c, (3.15)

or the solution of (2.1) do not escape G "$ by time t = 1. Hence x CA()

escapes only on the set of paths for which

"-, EA i/A-i vA _ /A-1

-- E vA(iA) 2 = f E [w(iA) - w(iA - A)12/2A ? 1+(x, -6o) - c. (3.16)
0 1

Standard estimates from the theory of large deviations [2] imply that there

exist A. > 0, t o > 0 such that for A ( Ao, e (E o the probability of the event

given in (3.16) is less than exp - (l+(x,-S) + 2c)/E2 . We are therefore :inished,

.'. except for the proof of (3.13). The details of this estimate are given in

Lemma A3 of the appendix.
S

Proof of (3). It follows from (1) and (2) that I'(x) ) I+(x). We give the easy proof

of 1'(x) (I+(x) in Lemma A4 of the appendix, which completes the proof. 0

or4'- 0
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4'APPENDIX

In this appendix we prove several technical lemmas that are needed to

prove the main theorem of Section 3. Before presenting the lemmas we

introduce some new notation. For -1 ( s ( 1, we define &(s) as the set of

all measurable mappings 8 from M -, N such that

u(r) = u(r) for a.e. 0 ( r ( t

implies

8[u](r) = 8[uJ(r) for a.e. 0 ( r ( min(t+s, 1).

Hence 8 has a 'reaction time' of s, which means he anticipates if s < 0.

The set r(s) of mappings from N - M is defined in the obvious analogous
'e..

way.

Lemma Al. L_.€I < , 6>0, and OEAbk~ iven sXM h that

•. sup C(u, 8[u]) 4 I. (A.])

iThen thereexists ' e A and C < such that for all u -M,

8' a,[ul(t)I V i' [u](t) ( C, (a.s.), (A.2)

C'r(u, 0'[u]) ( I. (A.3)

(A before C"5 the =os associated with the domain G'r.) Furthermore,

there i s < 0 uh that aiven 0 - A(s) satisfying (A.1) lhee eiTts B" E A such

1hat (A.3) holds for alI u c M(with 1" realacin 01 there ).
* -16-

Proof The cost associated with 13 is simply f J' (S[u](t)) 2 dt ( I, since exit

V
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* before time t = I mst occur. Define

S(uC 1) ( t: 110[u](0)I CI),

0,t C- S(uC 1)
01[u](t)) t t= ~'

Then 6,is obviously a strategy, and

02

In order to show C-r(u, 81[u]) 4 CQu, S[u]), it is sufficient to prove that if

0 and 0 are defined by

a'0 = b(O,u) + o(0)13[u]

= b(O,u) + o()0S[u] + o,0)03[u]Is(uC)(t)

= b(4i,O) + a(O)81ju1 0(0) ()=

then d(0,0P) 4 S. First note that

forO 04t4 1. Hence,

,0 10(t) - mmt)J JkI0(s) - 4'(s)Ids

+ JK 10(s) - 4JKs)II 1[u](s)I ds + 2BI/Cl.
0o

Using the inequality ab 4 (a 2 + b )/2 in the second integral, and the

Gronwall inequality, we obtain
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d(0,0) 4 2BI[l + K(2 + I)eK(2+I) /C1.

By choosing C1 large, we have

C'5(u, 0'[u]) ( C(u, O3u])

for all u -M.

Next we obtain 0' by smoothing 81. For A > 0, define

, B'~13[ul(t) = - t 0~ lsd

(we define 01[u](s) = 0 for s < 0). Obviously 0' satisfies (A.2). We also have

I , (0,[ul(t))2dt ( (B[u](t))2dt.
" "2- o 2 o

(A.3) now follows if we can show that small A > 0 implies that the solutions of

4" = b(Ou) + o(0')0lu), 0(0) = x

" = bOM,u) + o(SJ)01[u], (0) = x

satisfy d(0,0) ( 6. This follows from another application of Gronwall's lemma

and an integration by parts.

Finally we consider the last statement of the lemma.

Let s < 0 be given. By the same argument as above we may assume the

existence of 01' E A(s) satisfying (A.2) and (A.3). Define

r 0 0 (t (-s

[0 B"[u](t) = <
" l.'[u](t+S) -'S < t ( 1.
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. = b(O,u) + o(0)0"[u], 0(O) =x,

= b(O,u) + o(')1'[u], 4K0) = x.

Then S" e & Arguments such as those used above combined with the

boundedness of 0', 0" imply that when s < 0 is sufficiently large d(O, P) S 6.

Hence we have S" E A such that
,,

C'26(u, 1"[u]) ( C(u, 8[u]),

and the lemma is proved. 10

Lemma A2. Let 1, 6 > 0, and a e r be &ive such that

inf C(o(v], v) i 1. (A.4)
,. , yEN

Then there exists ,' r such that for all v EN

O I[v)(.) ij I tiecewise constant functiQn, (A.5)

',CS(C('[v], v) 1 . (A.6)

Furthermore, there is a s < 0 such that &iven a e r(s) satisfying (A.4)
, there exists c" E r such that (A.6) holds fLr all v E N (where al replaces

ax' there).

Proof. N may be written as the disjoint union N - NU . N2 U N. with

N1 - (v C N: X(O(Tx)) = 0),

f. v and
N ( N: X(O(Tx)) = and v2dt I

2

,Ot,
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N3 [v - N: X(O(T) =* and v2dt < I

(here = b(O,o~v]) + o(O)v, 0(0) = x, and Tx = inf{t: O(t) E ZG) A 1). It is clear

that we may define a' in any way we like on N, and N as long as it is a

strategy. For E > 0 let {u i, i = 1, ..., J) be an c-net of the control space K, and

let {Ki, i = 1, ..., J} be a Borel measurable partition of K such that the

Hausdorff distance between (ui) and K i is less than c for i ,= I ... J 1. For -y >

0, and 0 I ( 1/), define

T(i,I,v) J a[v](t)EK)dt

Af

Then for all v C N, 1,
1-%'.

E T(i,I,v) = y.

We define a'l[vl by o'[v)(t) = u, for 0 (t ( 7,and

,-fvl(t) u i  for t E 11 + T T(j,I-l,v), 1-Y + T T(jt-lv)),

Owing to the definition of a', we have

0 tsup , - b(O(r),a[v](r))dr ( EK+ -B

for every v E N and measurable function 0(.) taking values in G6 . Define

0 = b(O, a[v]) + o(O)v, 0(0) - x,

'P - b(P, al[vi) + o(O1)v, (0) - x.

IP
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In order to prove (A.6) it is sufficient to prove d(, P) 4 6 when c and 7Y are

*'sufficiently small, and when v Ce N . Using the estimate

-. at

10(t) - 4<tI J 1 r b(O, a~v]) - b(O, c('[v])Ids

+ If[b(O, a I[v]) - b( ,a[v]) + o(O)v - oOvd

eK 3KBJ+ 10-f i Ods/2 K ~(*.1-~vds/2,

and Gronwall's lemma, we obtain

... d(0,0) 4 (eK+ 7yB)[l + K(2 + I)exp K(2 + 1)]. (A.7)

Hence we obtain (A.6) for small e, 7/.

If we are given a e r(s), and define

1u1  for 0 4 t 4 -s
ce [v](t)

lov](t+s) for -s < t 1 ,

thence' c- r, and by the same argument as above we can obtain (A.6) when s <

0 is sufficiently large. The only difference is that in the inequality (A.7) we

replace eK + 'yB by --sB. 0

*Lemma A3. Givenp > 0and M <-,there tial AO 0  and co> 0such that

(3.13) holds for: e 4 col A ( A0

Proof. We begin by defining a stopping time (all stopping times are with

respect to w(.-)) for p, > 0:

T, inf~t: Ix EA(t) - xCEA([t/,&JA)I ) p1), A 1.
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A simple calculation shows there are >o > 0 and A, > 0 (depending on pl)

sucL that E 4 co, and A 4 6o. imply

PX(Tl < 1} ( exp - (M + 2)/c 2. (A.8)

Next we rewrite the equation for x(A as

dxcA = b(x6'A,u)dt + to(xE,&)dw + d-' ', x"'A(0) x, (A.9)

where

dye 'A = Co(x()[v'dt - dw]. (A. 10)

•"f o(xEA(iA))vA(t)dt = Eo(xE,A(iA))dw(t).

We therefore have the decomposition

7EA(t) = 11(t) + 12(t) + 13(t) + 14(t),

where (for k = [t/A] - 1)

k iA

1(t) f -E E[o(x',A(s)) - o(xE'A(iA))]dw(s),I fiA-A

k iA+A
%2(t) = e[o(xE A(s)) - o(xEA(iA))]vA(s)ds,

1

13(t ) =fikA C o(x ",A(s ) )v A( s ) d s,

AA

14(t) = J fo(x'A(s))dw(s).

For p2 > 0, define the stopping times

T2,i Iinft: IlP)l P2/4) A 1.

@6r
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The same estimates as those used to show (A.8) give the existence of 0 < eo,2

E0 , and 0 < A0 ,2 ( Ao, such that for c ( eo,2 and A ( Ao,2,

P-.( P 2J < 1) ( exp - (M + 1)/C 2

for i = 3, 4.

Next consider T2,1. Using

P(T2,1 < 1) Px{T2,1 < 1, T, = 1) + Px(Tj < 1),

equation (A.8), and a standard estimate on stochastic integrals [8; Lemma
4.7], by picking p, small we obtain < c' and 0 < A 2  such

sm ll o tan0,2 4 (0,2 0 < t0,2 /0,2

that E 4 e, and A A imply. that 0,2 imply,

PxX{T, 1 < 1) exp - (M + 1)/c 2 .

Finally we consider T, 2 . Using the Lipschitz property of o(.), we have

the following bound on a typical summand in 12(t)

f E[O(x (A(s)) - o(xeA(iA))lvA(s)ds

iA+A -,tf (k (b(xE' (s)) + ca(x(A(s))vA(s))ds (Iv"(t)Idt

0 c EKBA21v A(iA)I/2 + C K2BA2 IvA(iA)12/2.

We therefore have
PxT 2,2 < 1) 4 P &e2 KB le1il ) P2/4

,2 /A (a.l l)J P

,.. 0 , . Y ~l 'p/
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where {8} is a sequence of i.i.d. N(O,1/A) random variables. For the sake of

notational simplicity, we estimate these terms in the case where {0} is a scalar

- -- valued sequence.

Using E exp ce 2 = (1 - 2c/A) (for 2c/A < 1), we obtain (for any > 0 such

that 2e 2A K Bt < 1)

tE22- I/A i1-/

p122KB E: le0P

((exp - tP 2 / 4 )(I 2e2AkBt)1/A

AI
- exp[-tp 2/4 + - log(I - 2c 2A KBt)].

A

Now take = (M + 2)4/p 2 f 2 , and use the fact that the log term -

-8(M+2)KB/p 2 as A - 0 to get the estimate of the type (A.8) for the second

term of (A. 11).

For the first term of (A.11), we will use the fact that E exp civil

2E exp ce i = 2exp c2 /2. For k > 0 we have

P(EA 2 RB E lel l) /4J

. ( exp - t/4 exp 2 C2 A2 KB 2 /2 exp -log 2.
A

Minimizing w.r.t. t > 0, we obtain the bound

exp [- p2/32 2AK.2 B2 + (log 2)/A]

which again gives the desired bound of the type (A.8) for small A, e.

Hence there is 0 < ', 2  and 0 < A;, 2  such that for 0 , 2, and

0,2'

,-M
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Px(T2 ,2 < 1) 4 exp - (M + 1/

Now Set T2 = T21 .- On the set where T2 1, supo~tdIyEA(t )I PT. We

have shown that for c sufficiently small, PX{r 2 < I) 4 exp - (M + 1)/c 2  These

facts, together with a standard estimate in large deviations theory [2; proof of

Lemma 6.2] , yield the lemma. 0

Lemma A4. Assume Al anad A2. Then 1-(x) 4 1+(x).

Proof. Let c > 0 be given. By A2 there is 6 > 0 such that 1-(x) ( 1F(x,-S) + c,

1+(x) ) 1+(x, 6) - c. Next choose s < 0 such that the second statements of

Lemmas Al and A2 hold, with 1-(x) + 1 (resp., 1+(x) - 1) replacing I in Lemma

Al (resp. A2). Suppose 6 C- A(s) is a c-optimal solution to the problem

inf sup CQu, 0[u]) (A. 12)
OEA(q) uEM

Let F(s) denote the value of the expression given in (A.12). Then by Lemma

Al we may find IS" e- a such that

- ~~U sup C(u, 8"[u]) 4 1~)

Hence we may conclude 1-fx,-6) 4 1-(s). In an analogous manner we may

prove I+(x,6) ) IF(s), where

I +(s)- sypinf C(c~v], v).
Itos) (a E

It follows that I1(x) - 1+(x) 4 FU(s) - If(s) + 2c. Since c > 0 is arbitrary, we

are finished if we can show there is s < 0 such that TU(s) 4 I+(s) for all s, < s

< 0. However, as is proved in [4; p. 17], when -2 -N < S, U%(s) is a lower bound
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for the value vN defined in the sense of Friedman having step size 2-N and

allowing the minimizing player to move first (for the full definition of values

in the sense of Friedman, see [4; Sect. 3]). An analogous statement holds for
the corresponding u values v+ I+(s). Since (as is easily proved) v (v

for every N [4; p. i I], we are finished. 0

',.

Pd

.9

et,

|9
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